

 Navigation

 	
 index

 	Strada.jl latest documentation

Welcome to Read the Docs

This is an autogenerated index file.

Please create a /home/docs/checkouts/readthedocs.org/user_builds/stradajl/checkouts/latest/docs/index.rst or /home/docs/checkouts/readthedocs.org/user_builds/stradajl/checkouts/latest/docs/README.rst file with your own content.

If you want to use another markup, choose a different builder in your settings.

 Copyright .
 Created using Sphinx 1.3.1.

 Navigation

 	
 index

 	Strada.jl latest documentation

Index

 Copyright .
 Created using Sphinx 1.3.1.

 _static/up.png

_static/ajax-loader.gif

_static/plus.png

_static/comment-bright.png

_static/up-pressed.png

_static/minus.png

_static/down-pressed.png

_static/comment-close.png

_static/file.png

_static/comment.png

tutorial.html

 Navigation

 		
 index

 		Strada.jl latest documentation »

Tutorial

In this tutorial, we show how to get started with Strada and run it with the GPU backend.

Setting up Amazon’s GPU instances

These steps are from the Caffe wiki [https://github.com/BVLC/caffe/wiki/Install-Caffe-on-EC2-from-scratch-%28Ubuntu,-CUDA-7,-cuDNN%29]. First, start one of Amazon’s GPU instances (g2.2xlarge or g2.8xlarge) using Ubuntu 14.04 64 bit as the AMI. We also recommend to increase the root /dev/sda1 device size to something larger than 8 GiB.

First update the system and install build-essential:

sudo apt-get update && sudo apt-get upgrade
sudo apt-get install build-essential

Next, download the NVIDIA driver

wget http://developer.download.nvidia.com/compute/cuda/7_0/Prod/local_installers/cuda_7.0.28_linux.run

Extract the installers using

chmod +x cuda_7.0.28_linux.run
mkdir nvidia_installers
./cuda_7.0.28_linux.run -extract=`pwd`/nvidia_installers

Then update the linux image to be compatible with NVIDIA’s drivers:

sudo apt-get install linux-image-extra-virtual

While installing the linux-image-extra-virtual, you may be prompted “What would you like to do about menu.lst?”. I selected “keep the local version currently installed”.

Now we have to disable nouveau since it conflicts with NVIDIA’s kernel module. Open

sudo nano /etc/modprobe.d/blacklist-nouveau.conf

and add the following lines to this file:

blacklist nouveau
blacklist lbm-nouveau
options nouveau modeset=0
alias nouveau off
alias lbm-nouveau off

Back in the shell, execute the commands:

echo options nouveau modeset=0 | sudo tee -a /etc/modprobe.d/nouveau-kms.conf
sudo update-initramfs -u
sudo reboot

After the reboot, we can finally install the driver:

sudo apt-get install linux-source
sudo apt-get install linux-headers-`uname -r`

cd nvidia_installers
sudo ./NVIDIA-Linux-x86_64-346.46.run

Just select the defaults for all the questions that pop up.

Now we can install CUDA

sudo modprobe nvidia
sudo ./cuda-linux64-rel-7.0.28-19326674.run
sudo ./cuda-samples-linux-7.0.28-19326674.run

Follow the suggestion to add the following to your .bashrc

export PATH=$PATH:/usr/local/cuda-7.0/bin
export LD_LIBRARY_PATH=:/usr/local/cuda-7.0/lib64

and activate it by running source ~/.bashrc.

Installing Julia and Strada

Install Julia with

sudo add-apt-repository ppa:staticfloat/juliareleases
sudo add-apt-repository ppa:staticfloat/julia-deps
sudo apt-get update
sudo apt-get install julia

To install Strada, call julia and run

Pkg.clone("https://github.com/pcmoritz/Strada.jl")
Pkg.build("Strada")

Trying out models

First, download the MNIST data set from Yann LeCun’s website by running the commands

cd ~/.julia/v0.3/Strada/data/
bash get-mnist.sh

Now you can train the model on the CPU by running

cd ~/.julia/v0.3/Strada/examples
julia train-mnist.jl

To train the models on a GPU, you should open train-mnist.jl and uncomment the line set_gpu_mode(net).

 © Copyright .
 Created using Sphinx 1.3.1.

training.html

 Navigation

 		
 index

 		Strada.jl latest documentation »

Training networks

Strada facilitates implementing your own training mechanisms for neural networks in Julia. This makes it very convenient to use your own optimization procedures, which is very convenient if you are for example working on reinforcement learning. You can tap into the training mechanism on two levels: By manually loading data into the network and calling its forward and backward method and then getting the gradient blobs out, or using a slightly higher level interface which should be familiar if you have used a package for numerical optimization before. We describe the latter approach here.

As an example, let us consider how to train a convolutional network that can recognize MNIST digits. First, let us define the model:

batchsize = 64

layers = [
 MemoryLayer("data"; shape=(batchsize, 1, 28, 28)),
 MemoryLayer("label"; shape=(batchsize, 1)),
 ConvLayer("conv1", ["data"]; kernel=(5,5), n_filter=20),
 PoolLayer("pool1", ["conv1"]; kernel=(2,2), stride=(2,2)),
 ConvLayer("conv2", ["pool1"]; kernel=(5,5), n_filter=50),
 PoolLayer("pool2", ["conv2"]; kernel=(2,2), stride=(2,2)),
 LinearLayer("ip1", ["pool2"]; n_filter=500),
 ActivationLayer("relu1", ["ip1"]; activation=ReLU),
 LinearLayer("ip2", ["relu1"]; n_filter=10),
 SoftmaxWithLoss("loss", ["ip2", "label"])
]

net = Net("LeNet", layers; log_level=3);

Creating objective functions and predictors

You can now create an objective function that will be optimized by calling

(objective, theta) = make_objective(net, Float32)

Here, Float32 is the floating point type used by the network, theta is a flat vector containing the initial parameters and objective is a Julia function with signature

function objective(data::Data{F,N}, theta::Vector{F}; grad::Vector{F}=zeros(F, 0))
 # If length(grad) != 0, store the gradient of the loss function in grad.
 # The caller needs to guarantee that length(grad) = length(theta)
 # In any case, return the loss of the network computed on the minibatch data
end

Data{F,N} is the datatype representing a minibatch (see its documentation in the API). Here, N is the number of data layers in the network. Data{F,N} is an N tuple where each component is an array that will be fed into the corresponding data layer of the network. In the case of MNIST, N = 2 which means Data{F,N} is of type NTuple{Array{Float32, 4}, Array{Float32, 2}}. The first array in the tuple corresponds to images and the second one to labels.

Now we create a function that can compute a prediction on a new digit (once the network has been trained):

predictor = make_predictor(net, Float32, "ip2")

Here "ip2" is the name of the last layer before the softmax. The predictor has signature

function predictor(data::Data{F,N}, theta::Vector{F}; result::Matrix{Int}=zeros(Int, 0, 0))
 # Store the predicted label of the n-th example from minibatch data in result[n, 1]
end

The result is a matrix here, because we also support predicting sequences.

Loading the data

We can now load the dataset. Let us assume we have a function load_mnist that outputs arrays with shape (1, 28, 28, 50000) and (1, 50000) for the training set. Using the minibatch_stream constructor, this data can then be loaded into a MinibatchStream, which is a collection of Data{F,N} tuples of minibatch size that can be iterated over.

(Xtrain, ytrain) = load_mnist(directory; data_set=:train)
(Xtest, ytest) = load_mnist(directory; data_set=:test)

data = minibatch_stream(Xtrain, ytrain; batchsize=batchsize)
testset = minibatch_stream(Xtest, ytest, batchsize=batchsize)

Training the network

In this case, we train the model using SGD:

sgd(objective, data, theta; predictor=predictor, testset=testset,
 lr_schedule=InvLR(0.01, 0.0001, 0.75, 0.9), epochs=5, verbose=true)

 © Copyright .
 Created using Sphinx 1.3.1.

search.html

 Navigation

 		
 index

 		Strada.jl latest documentation »

 Search

 Please activate JavaScript to enable the search
 functionality.

 From here you can search these documents. Enter your search
 words into the box below and click "search". Note that the search
 function will automatically search for all of the words. Pages
 containing fewer words won't appear in the result list.

 © Copyright .
 Created using Sphinx 1.3.1.

network.html

 Navigation

 		
 index

 		Strada.jl latest documentation »

Defining Networks

Deep networks are compositional models that are naturally represented as a collection of inter-connected layers that work on chunks of data. In Strada, models can be conveniently described in Julia, either statically at the beginning of the computation (CaffeNet) or dynamically at runtime (ApolloNet). The network defines the entire model bottom-to-top from input data to loss. As data and derivatives flow through the network in the forward and backward passes Caffe stores, communicates, and manipulates the information as blobs: the blob is the standard array and unified memory interface for the framework. The layer comes next as the foundation of both model and computation. The net follows as the collection and connection of layers. The details of blob describe how information is stored and communicated in and across layers and nets.

Layers and Blobs

The layer is the essence of a model and the fundamental unit of computation. Layers convolve filters, pool, take inner products, apply nonlinearities like rectified-linear and sigmoid and other elementwise transformations, normalize, load data, and compute losses like softmax and hinge. See the layer catalogue for all operations. Most of the types needed for state-of-the-art deep learning tasks are there.

A Blob is a wrapper over the actual data being processed and passed along by Caffe, and also under the hood provides synchronization capability between the CPU and the GPU. Below, we describe how the Caffe blobs are mapped to Julia types. Each layer takes its input from so called bottom blobs and puts the output into top blobs.

Layer definitions in Julia looks like

ConvLayer("conv1", ["data"]; kernel=(11,11), stride=(4,4), n_filter=96)

The first parameter is the name of the layer, the second parameter is the name of the bottom blobs. There is an optional third parameter where you can specify the names of the top blobs. If it is omitted, we assume one top blob with the same name as the layer. Next, we describe how layers can be combined to form networks.

Networks in Strada

In Strada, there are two ways to specify a network: CaffeNet and ApolloNet. The former is designed to be compatible with Caffe so that all the features and models implemented for Caffe can easily be ported to Strada. It requires the specification of the network architecture before any computation is performed. The latter is more suited to implementing recurrent networks and allows building the network on the fly.

This is how a CaffeNet is defined:

layers = [
 MemoryLayer("data", data=ones(Float32, 10, 10)),
 MemoryLayer("label", data=ones(Float32, 10, 1)),
 LinearLayer("ip1", ["data"]; n_filter=1),
 ActivationLayer("relu1", ["ip1"]; activation=ReLU),
 LinearLayer("ip2", ["relu1"]; n_filter=1),
 SoftmaxWithLoss("loss", ["ip2", "label"])
]

net = Net("SimpleNet", layers; log_level=3)

This is how you can run an ApolloNet:

net = Net("SimpleNet"; log_level=3)

function run_simple(net)
 reset(net)
 forward(net, DataLayer("data", data=ones(Float32, 10, 10)))
 forward(net, DataLayer("label", data=ones(Float32, 10)))
 forward(net, LinearLayer("ip1", ["data"]; n_filter=1, param_names=["ip1_weights", "ip1_bias"]))
 forward(net, ActivationLayer("relu1", ["ip1"]; activation=ReLU))
 forward(net, LinearLayer("ip2", ["relu1"]; n_filter=1, param_names=["ip2_weights", "ip2_bias"]))
 forward(net, SoftmaxWithLoss("loss", ["ip2", "label"]))
end

run_simple(net)

Not that an insignificant amount of runtime is being spent on the construction of the network (on the recurrent networks I tried this amounted to about 10% of the total runtime).

Wrapping Caffe blobs in Strada

For a CaffeNet, intermediate results from layer computations are stored in net.blobs, which has two fields: net.blobs.data for the data and net.blobs.diff for the gradients. Both these fields are dictionaries that map layer names to their top blobs, which are Julia arrays. Parameters are stored in net.layers, they also have a net.layers.data and net.layers.diff field.

For an ApolloNet, parameters are named and stored in the net.params which also has a subfield data and diff. This makes sharing of parameters between parts of the network very easy, a crucial feature for recurrent networks. The tops of the layers are stored in net.blobs.

 © Copyright .
 Created using Sphinx 1.3.1.

api/Strada.html

 Navigation

 		
 index

 		Strada.jl latest documentation »

Strada

Exported

ActivationLayer(name::ASCIIString, bottoms::Array{ASCIIString, 1}) ¶

Activation layers compute element-wise function, taking one bottom blob as input and producing one top blob of the same size. Parameters are

		activation (default Sigmoid): The nonlinear function applied. Can be ReLU, Sigmoid or TanH.

Both input and output are of shape n * c * h * w.

source:
Strada/src/layers.jl:182 [https://github.com/pcmoritz/Strada.jl/tree/3baa11b349530fb35b90c972eabe3f6abff2dc26/src/layers.jl#L182]

ConcatLayer(name::ASCIIString, bottoms::Array{ASCIIString, 1}) ¶

The Concat layer is a utility layer that concatenates its multiple input blobs to one single output blob. It takes one keyword parameter, axis. The input shape of the bottoms are n_i * c_i * h * w for i = 1, ..., K and the output shape is

		(n_1 + n_2 + ... + n_K) * c_1 * h * w if axis = 0 in which case all c_i should be the same and

		n_1 * (c_1 + c_2 + ... + c_K) * h * w if axis = 1 in which case all n_i should be the same.

source:
Strada/src/layers.jl:284 [https://github.com/pcmoritz/Strada.jl/tree/3baa11b349530fb35b90c972eabe3f6abff2dc26/src/layers.jl#L284]

ConvLayer(name::ASCIIString, bottoms::Array{ASCIIString, 1}) ¶

The Convolution layer convolves the input image with a set of learnable filters, each producing one feature map in the output image. keyword parameters are

		n_filter: The number of filters (required)

		kernel: A tuple specifying height and width of each filter (required)

		stride: A tuple which specifies the intervals at which to apply the filters to the input (horizontally and vertically)

		pad: A tuple which specifies the number of pixels to (implicitly) add to each side of the input

		group (default 1): If g > 1, we restrict the connectivity of each filter to a subset of the input. Specifically, the input and output channels are separated into g groups, and the ith output group channels will be only connected to the ith input group channels.

The input is of shape n * c_i * h_i * w_i and the output is of shape n * c_o * h_o * w_o, where h_o = (h_i + 2 * pad_h - kernel_h) / stride_h + 1 and w_o likewise.

source:
Strada/src/layers.jl:96 [https://github.com/pcmoritz/Strada.jl/tree/3baa11b349530fb35b90c972eabe3f6abff2dc26/src/layers.jl#L96]

DataLayer(name::ASCIIString) ¶

The DataLayer makes it easy to propagate data through the network while doing computation. The data is being stored in Google Protocol Buffers and transferred to Caffe in this way. Its only keyword argument is data which is an array that will be presented to the next layer through the top blob. It is meant to be used only with ApolloNets.

source:
Strada/src/layers.jl:351 [https://github.com/pcmoritz/Strada.jl/tree/3baa11b349530fb35b90c972eabe3f6abff2dc26/src/layers.jl#L351]

DropoutLayer(name::ASCIIString, bottoms::Array{ASCIIString, 1}) ¶

The dropout layer is a regularizer that randomly sets input values to zero.

source:
Strada/src/layers.jl:217 [https://github.com/pcmoritz/Strada.jl/tree/3baa11b349530fb35b90c972eabe3f6abff2dc26/src/layers.jl#L217]

EuclideanLoss(name::ASCIIString, bottoms::Array{ASCIIString, 1}) ¶

The Euclidean loss layer computes the sum of squares of differences of its two inputs

source:
Strada/src/layers.jl:332 [https://github.com/pcmoritz/Strada.jl/tree/3baa11b349530fb35b90c972eabe3f6abff2dc26/src/layers.jl#L332]

LRNLayer(name::ASCIIString, bottoms::Array{ASCIIString, 1}) ¶

The local response normalization layer performs a kind of “lateral inhibition” by normalizing over local input regions. In ACROSS_CHANNELS mode, the local regions extend across nearby channels, but have no spatial extent (i.e., they have shape local_size x 1 x 1). In WITHIN_CHANNEL mode, the local regions extend spatially, but are in separate channels (i.e., they have shape 1 x local_size x local_size). Each input value is divided by (1+(α/n) sum_i x_i^2)β), where n is the size of each local region, and the sum is taken over the region centered at that value (zero padding is added where necessary). It accepts the following keyword arguments:

		local_size (default 3): Size of the region the normalization is computed over

		alpha (default 5e-5): Value of the parameter α

		beta (default 0.75): Value of the parameter β

		norm_region: Mode of the local contrast normalization. Can be ACROSS_CHANNELS or WITHIN_CHANNEL.

source:
Strada/src/layers.jl:202 [https://github.com/pcmoritz/Strada.jl/tree/3baa11b349530fb35b90c972eabe3f6abff2dc26/src/layers.jl#L202]

LinearLayer(name::ASCIIString, bottoms::Array{ASCIIString, 1}) ¶

The InnerProduct layer (also usually referred to as the fully connected layer) treats the input as a simple vector and produces an output in the form of a single vector (with the blob’s height and width set to 1). The keyword parameters are

		n_filter: The number of filters (required)

The input is of shape n * c_i * h_i * w_i and the output of shape n * c_o * 1 * 1.

source:
Strada/src/layers.jl:125 [https://github.com/pcmoritz/Strada.jl/tree/3baa11b349530fb35b90c972eabe3f6abff2dc26/src/layers.jl#L125]

LstmLayer(name::ASCIIString, bottoms::Array{ASCIIString, 1}) ¶

The LstmLayer is an LSTM unit. It takes two blobs as input, the current LSTM input and the previous memory cell content. It outputs the new hidden state and the updated memory cell.

source:
Strada/src/layers.jl:240 [https://github.com/pcmoritz/Strada.jl/tree/3baa11b349530fb35b90c972eabe3f6abff2dc26/src/layers.jl#L240]

LstmLayer(name::ASCIIString, bottoms::Array{ASCIIString, 1}, tops::Array{ASCIIString, 1}) ¶

The LstmLayer is an LSTM unit. It takes two blobs as input, the current LSTM input and the previous memory cell content. It outputs the new hidden state and the updated memory cell.

source:
Strada/src/layers.jl:240 [https://github.com/pcmoritz/Strada.jl/tree/3baa11b349530fb35b90c972eabe3f6abff2dc26/src/layers.jl#L240]

MemoryLayer(name::ASCIIString) ¶

The MemoryLayer presents data to Caffe through a pointer (it is implemented as a new Caffe Layer called PointerData), which can be set using set_data! method of CaffeNet. It is the preferred way to fill CaffeNet with data. As each MemoryLayer provides exactly one top blob, you will typically have multiple of these (in the supervised setting, one for labels and one for images for example). In set_data!, you can specify with an integer index which of the layers will be filled with the data provided.

source:
Strada/src/layers.jl:339 [https://github.com/pcmoritz/Strada.jl/tree/3baa11b349530fb35b90c972eabe3f6abff2dc26/src/layers.jl#L339]

Net(name::ASCIIString) ¶

Create an empty ApolloNet. A log_level of 0 prints full caffe debug information, a log_level of 3 prints nothing.

source:
Strada/src/apollonet.jl:11 [https://github.com/pcmoritz/Strada.jl/tree/3baa11b349530fb35b90c972eabe3f6abff2dc26/src/apollonet.jl#L11]

Net(name::ASCIIString, layers::Array{Layer, 1}) ¶

Load a model from a caffe compatible .caffemodel file (for example from the caffe model zoo).

source:
Strada/src/caffenet.jl:22 [https://github.com/pcmoritz/Strada.jl/tree/3baa11b349530fb35b90c972eabe3f6abff2dc26/src/caffenet.jl#L22]

PoolLayer(name::ASCIIString, bottoms::Array{ASCIIString, 1}) ¶

The PoolLayer partitions the input image into a set of non-overlapping rectangles and, for each such sub-region, outputs the maximum or average value. The keyword parameters are

		method (default MAX): The pooling method. Can be MAX, AVE or STOCHASTIC.

		pad (default 0): Specifies the number of pixels to (implicitly) add to each side of the input

		stride (default 1): Specifies the intervals at which to apply the filters to the input

The input is of shape n * c * h_i * w_i and the output of shape n * c * h_o * w_o where h_o and w_o are computed in the same way as for the convolution.

source:
Strada/src/layers.jl:151 [https://github.com/pcmoritz/Strada.jl/tree/3baa11b349530fb35b90c972eabe3f6abff2dc26/src/layers.jl#L151]

Softmax(name::ASCIIString, bottoms::Array{ASCIIString, 1}) ¶

Computes the softmax of the input. The parameter axis specifies which axis the softmax is computed over.

source:
Strada/src/layers.jl:316 [https://github.com/pcmoritz/Strada.jl/tree/3baa11b349530fb35b90c972eabe3f6abff2dc26/src/layers.jl#L316]

SoftmaxWithLoss(name::ASCIIString, bottoms::Array{ASCIIString, 1}) ¶

The softmax loss layer computes the multinomial logistic loss of the softmax of its inputs. It’s conceptually identical to a softmax layer followed by a multinomial logistic loss layer, but provides a more numerically stable gradient. Its parameters are

		ignore_label (default -1): Label does not contribute to the loss

This layer expects two bottom blobs, the actual data of size n * c * h * w and a label of size n * 1 * 1 * 1.

source:
Strada/src/layers.jl:299 [https://github.com/pcmoritz/Strada.jl/tree/3baa11b349530fb35b90c972eabe3f6abff2dc26/src/layers.jl#L299]

WordvecLayer(name::ASCIIString, bottoms::Array{ASCIIString, 1}) ¶

The WordvecLayer turns positive integers (indexes) between 0 and vocab_size - 1 into dense vectors of fixed size dimension. The input is of size n where n is the batchsize and the output is of size n * dimension.

source:
Strada/src/layers.jl:256 [https://github.com/pcmoritz/Strada.jl/tree/3baa11b349530fb35b90c972eabe3f6abff2dc26/src/layers.jl#L256]

backward(net::ApolloNet) ¶

Run a backward pass through the whole network.

source:
Strada/src/apollonet.jl:34 [https://github.com/pcmoritz/Strada.jl/tree/3baa11b349530fb35b90c972eabe3f6abff2dc26/src/apollonet.jl#L34]

backward(net::CaffeNet) ¶

Run a backward pass through the whole network.

source:
Strada/src/caffenet.jl:79 [https://github.com/pcmoritz/Strada.jl/tree/3baa11b349530fb35b90c972eabe3f6abff2dc26/src/caffenet.jl#L79]

copy!(output::ApolloDict, input::Array{T, 1}) ¶

Copy a flat parameter vector into a binary blob.

source:
Strada/src/blobs.jl:160 [https://github.com/pcmoritz/Strada.jl/tree/3baa11b349530fb35b90c972eabe3f6abff2dc26/src/blobs.jl#L160]

copy!(output::Array{T, 1}, input::ApolloDict) ¶

Copy a binary blob into a flat parameter vector.

source:
Strada/src/blobs.jl:150 [https://github.com/pcmoritz/Strada.jl/tree/3baa11b349530fb35b90c972eabe3f6abff2dc26/src/blobs.jl#L150]

copy!(output::Array{T, 1}, input::CaffeDict) ¶

Copy a binary blob into a flat parameter vector.

source:
Strada/src/blobs.jl:30 [https://github.com/pcmoritz/Strada.jl/tree/3baa11b349530fb35b90c972eabe3f6abff2dc26/src/blobs.jl#L30]

copy!(output::CaffeDict, input::Array{T, 1}) ¶

Copy a flat parameter vector into a binary blob.

source:
Strada/src/blobs.jl:42 [https://github.com/pcmoritz/Strada.jl/tree/3baa11b349530fb35b90c972eabe3f6abff2dc26/src/blobs.jl#L42]

filler(name::Symbol) ¶

Fillers are random number generators that fills a blob using the specified algorithm. The algorithm is specified by

		name: Can be :gaussian, :uniform, :xavier or :constant

The parameters are given by keyword arguments:

		value: Gives the value for a constant filler

		min and max: Range for a uniform filler

		mean and std: Mean and standard deviation of a Gaussian filler

source:
Strada/src/layers.jl:64 [https://github.com/pcmoritz/Strada.jl/tree/3baa11b349530fb35b90c972eabe3f6abff2dc26/src/layers.jl#L64]

forward(net::ApolloNet, layer::Layer) ¶

Run a forward pass of a single layer.

source:
Strada/src/apollonet.jl:25 [https://github.com/pcmoritz/Strada.jl/tree/3baa11b349530fb35b90c972eabe3f6abff2dc26/src/apollonet.jl#L25]

forward(net::CaffeNet) ¶

Run a forward pass through the whole network.

source:
Strada/src/caffenet.jl:74 [https://github.com/pcmoritz/Strada.jl/tree/3baa11b349530fb35b90c972eabe3f6abff2dc26/src/caffenet.jl#L74]

get_batchsize(str::MinibatchStream) ¶

Batchsize of the MinibatchStream

source:
Strada/src/stream.jl:70 [https://github.com/pcmoritz/Strada.jl/tree/3baa11b349530fb35b90c972eabe3f6abff2dc26/src/stream.jl#L70]

getminibatch(str::MinibatchStream) ¶

Get a random minibatch from the MinibatchStream

source:
Strada/src/stream.jl:75 [https://github.com/pcmoritz/Strada.jl/tree/3baa11b349530fb35b90c972eabe3f6abff2dc26/src/stream.jl#L75]

grad_check{F}(objective::Function, theta::Array{F, 1}, data, epsilon::Float64) ¶

Check gradients using symmetric finite differences. See the tests for example how to run.

source:
Strada/src/gradcheck.jl:11 [https://github.com/pcmoritz/Strada.jl/tree/3baa11b349530fb35b90c972eabe3f6abff2dc26/src/gradcheck.jl#L11]

length(blob::ApolloDict) ¶

The total number of variables in a binary blob.

source:
Strada/src/blobs.jl:141 [https://github.com/pcmoritz/Strada.jl/tree/3baa11b349530fb35b90c972eabe3f6abff2dc26/src/blobs.jl#L141]

length(blob::CaffeDict) ¶

Number of parameters in the blob.

source:
Strada/src/blobs.jl:19 [https://github.com/pcmoritz/Strada.jl/tree/3baa11b349530fb35b90c972eabe3f6abff2dc26/src/blobs.jl#L19]

load_caffemodel(net::CaffeNet, filename::String) ¶

Load a model from a caffe compatible .caffemodel file (for example from the caffe model zoo).

source:
Strada/src/caffenet.jl:56 [https://github.com/pcmoritz/Strada.jl/tree/3baa11b349530fb35b90c972eabe3f6abff2dc26/src/caffenet.jl#L56]

minibatch_stream(args::AbstractArray{T, N}...) ¶

Construct a MinibatchStream from a tuple of data arrays with full batch size.

source:
Strada/src/stream.jl:46 [https://github.com/pcmoritz/Strada.jl/tree/3baa11b349530fb35b90c972eabe3f6abff2dc26/src/stream.jl#L46]

num_batches(str::MinibatchStream) ¶

Number of minibatches in the MinibatchStream

source:
Strada/src/stream.jl:60 [https://github.com/pcmoritz/Strada.jl/tree/3baa11b349530fb35b90c972eabe3f6abff2dc26/src/stream.jl#L60]

read_svmlight(filename::String) ¶

Load a dataset from the libsvm compatible svmlight file format into a sparse matrix.

source:
Strada/src/svmlight.jl:3 [https://github.com/pcmoritz/Strada.jl/tree/3baa11b349530fb35b90c972eabe3f6abff2dc26/src/svmlight.jl#L3]

read_svmlight(filename::String, Dtype::DataType) ¶

Load a dataset from the libsvm compatible svmlight file format into a sparse matrix.

source:
Strada/src/svmlight.jl:3 [https://github.com/pcmoritz/Strada.jl/tree/3baa11b349530fb35b90c972eabe3f6abff2dc26/src/svmlight.jl#L3]

reset(net::ApolloNet) ¶

Clear the active layers and active parameters of the net so a new forward pass can be run.

source:
Strada/src/apollonet.jl:19 [https://github.com/pcmoritz/Strada.jl/tree/3baa11b349530fb35b90c972eabe3f6abff2dc26/src/apollonet.jl#L19]

set_mode_cpu(net::ApolloNet) ¶

Activate CPU mode.

source:
Strada/src/apollonet.jl:39 [https://github.com/pcmoritz/Strada.jl/tree/3baa11b349530fb35b90c972eabe3f6abff2dc26/src/apollonet.jl#L39]

set_mode_cpu(net::CaffeNet) ¶

Activate CPU mode.

source:
Strada/src/caffenet.jl:44 [https://github.com/pcmoritz/Strada.jl/tree/3baa11b349530fb35b90c972eabe3f6abff2dc26/src/caffenet.jl#L44]

set_mode_gpu(net::ApolloNet) ¶

Activate GPU mode.

source:
Strada/src/apollonet.jl:44 [https://github.com/pcmoritz/Strada.jl/tree/3baa11b349530fb35b90c972eabe3f6abff2dc26/src/apollonet.jl#L44]

set_mode_gpu(net::CaffeNet) ¶

Activate CPU mode.

source:
Strada/src/caffenet.jl:50 [https://github.com/pcmoritz/Strada.jl/tree/3baa11b349530fb35b90c972eabe3f6abff2dc26/src/caffenet.jl#L50]

sgd{F}(objective!::Function, data::DataStream, theta::Array{F, 1}) ¶

Run the stochastic gradient descent method on the objective. If a testset is provided, generalization performance will also periodically be evaluated.

source:
Strada/src/sgd.jl:22 [https://github.com/pcmoritz/Strada.jl/tree/3baa11b349530fb35b90c972eabe3f6abff2dc26/src/sgd.jl#L22]

zero!(A::ApolloDict) ¶

Fill a binary blob with zeros.

source:
Strada/src/blobs.jl:170 [https://github.com/pcmoritz/Strada.jl/tree/3baa11b349530fb35b90c972eabe3f6abff2dc26/src/blobs.jl#L170]

zero!(A::CaffeDict) ¶

Fill a binary blob with zeros.

source:
Strada/src/blobs.jl:54 [https://github.com/pcmoritz/Strada.jl/tree/3baa11b349530fb35b90c972eabe3f6abff2dc26/src/blobs.jl#L54]

DataStream ¶

A data stream represents a data source for a neural network. It could be data held in memory, in a database on disk, or a network socket for example.

source:
Strada/src/stream.jl:9 [https://github.com/pcmoritz/Strada.jl/tree/3baa11b349530fb35b90c972eabe3f6abff2dc26/src/stream.jl#L9]

Data ¶

Data to be fed into a CaffeNet is kept in a Data{F,N} structure where F is the type of floating point number used to store the data (Float32 or Float64) and N is the number of data layers of the network. We represent Data{F,N} as a tuple, where the dimension i holds data that will be fed into data layer i of the network. A canonical example is for supervised learning, where N is 2, the first component representing the image (say) and the second component representing the label. Each dimension of the tuple typically holds an array whose last dimension corresponds to the index in the minibatch.

source:
Strada/src/stream.jl:4 [https://github.com/pcmoritz/Strada.jl/tree/3baa11b349530fb35b90c972eabe3f6abff2dc26/src/stream.jl#L4]

Internal

calc_full_gradient{F}(objective!::Function, data::DataStream, theta::Array{F, 1}, grad::Array{F, 1}) ¶

Calculate the full gradient of the model at parameters theta over the dataset data. The gradient will be stored in grad.

source:
Strada/src/utils.jl:43 [https://github.com/pcmoritz/Strada.jl/tree/3baa11b349530fb35b90c972eabe3f6abff2dc26/src/utils.jl#L43]

calc_full_prediction{F}(predictor::Function, data::DataStream, theta::Array{F, 1}) ¶

Calculate prediction performance of the model with parameters theta over a whole dataset data

source:
Strada/src/utils.jl:57 [https://github.com/pcmoritz/Strada.jl/tree/3baa11b349530fb35b90c972eabe3f6abff2dc26/src/utils.jl#L57]

size(str::MinibatchStream) ¶

Number of datapoints in the MinibatchStream

source:
Strada/src/stream.jl:65 [https://github.com/pcmoritz/Strada.jl/tree/3baa11b349530fb35b90c972eabe3f6abff2dc26/src/stream.jl#L65]

ApolloDict ¶

An ApolloDict is a collection of blobs with names, each name is associated with
one floating point array. Example: The name ‘ip_weights’ could map to the weights of a linear layer.

source:
Strada/src/blobs.jl:71 [https://github.com/pcmoritz/Strada.jl/tree/3baa11b349530fb35b90c972eabe3f6abff2dc26/src/blobs.jl#L71]

CaffeDict ¶

A CaffeDict is a collection of blobs with names, each name is associated with
an arbitrary number of floating point arrays. Example: The name ‘conv1’ could
map to a vector containing the biases and weights of a convolution.

source:
Strada/src/blobs.jl:7 [https://github.com/pcmoritz/Strada.jl/tree/3baa11b349530fb35b90c972eabe3f6abff2dc26/src/blobs.jl#L7]

EmptyStream ¶

An empty stream represents a data source with no data.

source:
Strada/src/stream.jl:14 [https://github.com/pcmoritz/Strada.jl/tree/3baa11b349530fb35b90c972eabe3f6abff2dc26/src/stream.jl#L14]

MinibatchStream ¶

A MinibatchStream is a collection of data represented in memory that has been partitioned into minibatches.

source:
Strada/src/stream.jl:25 [https://github.com/pcmoritz/Strada.jl/tree/3baa11b349530fb35b90c972eabe3f6abff2dc26/src/stream.jl#L25]

NetData{D} ¶

A collection of blobs in a network. Grouped into ‘data’ (the actual parameters)
and ‘diff’ (the gradients) so they can be treated as vectors that can be added together.

source:
Strada/src/blobs.jl:64 [https://github.com/pcmoritz/Strada.jl/tree/3baa11b349530fb35b90c972eabe3f6abff2dc26/src/blobs.jl#L64]

 © Copyright .
 Created using Sphinx 1.3.1.

api/index.html

 Navigation

 		
 index

 		Strada.jl latest documentation »

API-INDEX

MODULE: Strada

Methods [Exported]

ActivationLayer(name::ASCIIString, bottoms::Array{ASCIIString, 1}) Activation layers compute element-wise function, taking one bottom blob as input and producing one top blob of the same size. Parameters are

ConcatLayer(name::ASCIIString, bottoms::Array{ASCIIString, 1}) The Concat layer is a utility layer that concatenates its multiple input blobs to one single output blob. It takes one keyword parameter, axis. The input shape of the bottoms are n_i * c_i * h * w for i = 1, ..., K and the output shape is

ConvLayer(name::ASCIIString, bottoms::Array{ASCIIString, 1}) The Convolution layer convolves the input image with a set of learnable filters, each producing one feature map in the output image. keyword parameters are

DataLayer(name::ASCIIString) The DataLayer makes it easy to propagate data through the network while doing computation. The data is being stored in Google Protocol Buffers and transferred to Caffe in this way. Its only keyword argument is data which is an array that will be presented to the next layer through the top blob. It is meant to be used only with ApolloNets.

DropoutLayer(name::ASCIIString, bottoms::Array{ASCIIString, 1}) The dropout layer is a regularizer that randomly sets input values to zero.

EuclideanLoss(name::ASCIIString, bottoms::Array{ASCIIString, 1}) The Euclidean loss layer computes the sum of squares of differences of its two inputs

LRNLayer(name::ASCIIString, bottoms::Array{ASCIIString, 1}) The local response normalization layer performs a kind of “lateral inhibition” by normalizing over local input regions. In ACROSS_CHANNELS mode, the local regions extend across nearby channels, but have no spatial extent (i.e., they have shape local_size x 1 x 1). In WITHIN_CHANNEL mode, the local regions extend spatially, but are in separate channels (i.e., they have shape 1 x local_size x local_size). Each input value is divided by (1+(α/n) sum_i x_i^2)β), where n is the size of each local region, and the sum is taken over the region centered at that value (zero padding is added where necessary). It accepts the following keyword arguments:

LinearLayer(name::ASCIIString, bottoms::Array{ASCIIString, 1}) The InnerProduct layer (also usually referred to as the fully connected layer) treats the input as a simple vector and produces an output in the form of a single vector (with the blob’s height and width set to 1). The keyword parameters are

LstmLayer(name::ASCIIString, bottoms::Array{ASCIIString, 1}) The LstmLayer is an LSTM unit. It takes two blobs as input, the current LSTM input and the previous memory cell content. It outputs the new hidden state and the updated memory cell.

LstmLayer(name::ASCIIString, bottoms::Array{ASCIIString, 1}, tops::Array{ASCIIString, 1}) The LstmLayer is an LSTM unit. It takes two blobs as input, the current LSTM input and the previous memory cell content. It outputs the new hidden state and the updated memory cell.

MemoryLayer(name::ASCIIString) The MemoryLayer presents data to Caffe through a pointer (it is implemented as a new Caffe Layer called PointerData), which can be set using set_data! method of CaffeNet. It is the preferred way to fill CaffeNet with data. As each MemoryLayer provides exactly one top blob, you will typically have multiple of these (in the supervised setting, one for labels and one for images for example). In set_data!, you can specify with an integer index which of the layers will be filled with the data provided.

Net(name::ASCIIString) Create an empty ApolloNet. A log_level of 0 prints full caffe debug information, a log_level of 3 prints nothing.

Net(name::ASCIIString, layers::Array{Layer, 1}) Load a model from a caffe compatible .caffemodel file (for example from the caffe model zoo).

PoolLayer(name::ASCIIString, bottoms::Array{ASCIIString, 1}) The PoolLayer partitions the input image into a set of non-overlapping rectangles and, for each such sub-region, outputs the maximum or average value. The keyword parameters are

Softmax(name::ASCIIString, bottoms::Array{ASCIIString, 1}) Computes the softmax of the input. The parameter axis specifies which axis the softmax is computed over.

SoftmaxWithLoss(name::ASCIIString, bottoms::Array{ASCIIString, 1}) The softmax loss layer computes the multinomial logistic loss of the softmax of its inputs. It’s conceptually identical to a softmax layer followed by a multinomial logistic loss layer, but provides a more numerically stable gradient. Its parameters are

WordvecLayer(name::ASCIIString, bottoms::Array{ASCIIString, 1}) The WordvecLayer turns positive integers (indexes) between 0 and vocab_size - 1 into dense vectors of fixed size dimension. The input is of size n where n is the batchsize and the output is of size n * dimension.

backward(net::ApolloNet) Run a backward pass through the whole network.

backward(net::CaffeNet) Run a backward pass through the whole network.

copy!(output::ApolloDict, input::Array{T, 1}) Copy a flat parameter vector into a binary blob.

copy!(output::Array{T, 1}, input::ApolloDict) Copy a binary blob into a flat parameter vector.

copy!(output::Array{T, 1}, input::CaffeDict) Copy a binary blob into a flat parameter vector.

copy!(output::CaffeDict, input::Array{T, 1}) Copy a flat parameter vector into a binary blob.

filler(name::Symbol) Fillers are random number generators that fills a blob using the specified algorithm. The algorithm is specified by

forward(net::ApolloNet, layer::Layer) Run a forward pass of a single layer.

forward(net::CaffeNet) Run a forward pass through the whole network.

get_batchsize(str::MinibatchStream) Batchsize of the MinibatchStream

getminibatch(str::MinibatchStream) Get a random minibatch from the MinibatchStream

grad_check{F}(objective::Function, theta::Array{F, 1}, data, epsilon::Float64) Check gradients using symmetric finite differences. See the tests for example how to run.

length(blob::ApolloDict) The total number of variables in a binary blob.

length(blob::CaffeDict) Number of parameters in the blob.

load_caffemodel(net::CaffeNet, filename::String) Load a model from a caffe compatible .caffemodel file (for example from the caffe model zoo).

minibatch_stream(args::AbstractArray{T, N}...) Construct a MinibatchStream from a tuple of data arrays with full batch size.

num_batches(str::MinibatchStream) Number of minibatches in the MinibatchStream

read_svmlight(filename::String) Load a dataset from the libsvm compatible svmlight file format into a sparse matrix.

read_svmlight(filename::String, Dtype::DataType) Load a dataset from the libsvm compatible svmlight file format into a sparse matrix.

reset(net::ApolloNet) Clear the active layers and active parameters of the net so a new forward pass can be run.

set_mode_cpu(net::ApolloNet) Activate CPU mode.

set_mode_cpu(net::CaffeNet) Activate CPU mode.

set_mode_gpu(net::ApolloNet) Activate GPU mode.

set_mode_gpu(net::CaffeNet) Activate CPU mode.

sgd{F}(objective!::Function, data::DataStream, theta::Array{F, 1}) Run the stochastic gradient descent method on the objective. If a testset is provided, generalization performance will also periodically be evaluated.

zero!(A::ApolloDict) Fill a binary blob with zeros.

zero!(A::CaffeDict) Fill a binary blob with zeros.

Types [Exported]

DataStream A data stream represents a data source for a neural network. It could be data held in memory, in a database on disk, or a network socket for example.

Typealiass [Exported]

Data Data to be fed into a CaffeNet is kept in a Data{F,N} structure where F is the type of floating point number used to store the data (Float32 or Float64) and N is the number of data layers of the network. We represent Data{F,N} as a tuple, where the dimension i holds data that will be fed into data layer i of the network. A canonical example is for supervised learning, where N is 2, the first component representing the image (say) and the second component representing the label. Each dimension of the tuple typically holds an array whose last dimension corresponds to the index in the minibatch.

Methods [Internal]

calc_full_gradient{F}(objective!::Function, data::DataStream, theta::Array{F, 1}, grad::Array{F, 1}) Calculate the full gradient of the model at parameters theta over the dataset data. The gradient will be stored in grad.

calc_full_prediction{F}(predictor::Function, data::DataStream, theta::Array{F, 1}) Calculate prediction performance of the model with parameters theta over a whole dataset data

size(str::MinibatchStream) Number of datapoints in the MinibatchStream

Types [Internal]

ApolloDict An ApolloDict is a collection of blobs with names, each name is associated with

CaffeDict A CaffeDict is a collection of blobs with names, each name is associated with

EmptyStream An empty stream represents a data source with no data.

MinibatchStream A MinibatchStream is a collection of data represented in memory that has been partitioned into minibatches.

NetData{D} A collection of blobs in a network. Grouped into ‘data’ (the actual parameters)

 © Copyright .
 Created using Sphinx 1.3.1.

_static/down.png

examples.html

 Navigation

 		
 index

 		Strada.jl latest documentation »

Examples

Scripts to train or evaluate these examples are located in the examples subdirectory. This is only a very small collection, but it is straightforward to port any model available in Caffe. If you are interested in porting over more models from the Caffe model zoo [http://caffe.berkeleyvision.org/model_zoo.html] (see also the model zoo wiki [https://github.com/BVLC/caffe/wiki/Model-Zoo]), you should open an issue on github or create a pull request.

An SVM like shallow network

function make_svm(p::Int; batchsize::Int=100)
 layers = [
 MemoryLayer("data"; shape=(batchsize, 1, 1, p)),
 MemoryLayer("label"; shape=(batchsize, 1)),
 LinearLayer("linear", ["data"]; n_filter=3, weight_filler=filler(:constant)),
 SoftmaxWithLoss("loss", ["linear", "label"])
]
 return Net("SVMNet", layers; log_level=3)
end

A convolutional network for MNIST

layers = [
 MemoryLayer("data"; shape=(batchsize, 1, 28, 28)),
 MemoryLayer("label"; shape=(batchsize, 1)),
 ConvLayer("conv1", ["data"]; kernel=(5,5), n_filter=20),
 PoolLayer("pool1", ["conv1"]; kernel=(2,2), stride=(2,2)),
 ConvLayer("conv2", ["pool1"]; kernel=(5,5), n_filter=50),
 PoolLayer("pool2", ["conv2"]; kernel=(2,2), stride=(2,2)),
 LinearLayer("ip1", ["pool2"]; n_filter=500),
 ActivationLayer("relu1", ["ip1"]; activation=ReLU),
 LinearLayer("ip2", ["relu1"]; n_filter=10),
 SoftmaxWithLoss("loss", ["ip2", "label"])
]

net = Net("LeNet", layers; log_level=3);

A convolutional network for CIFAR10

layers = [
 MemoryLayer("data"; shape=(batchsize, 3, 32, 32))
 MemoryLayer("label"; shape=(batchsize, 1))
 ConvLayer("conv1", ["data"]; kernel=(5,5), pad=(2,2), n_filter=32, weight_filler=filler(:gaussian; std=0.0001))
 PoolLayer("pool1", ["conv1"]; kernel=(3,3), stride=(2,2))
 ActivationLayer("relu1", ["pool1"]; activation=ReLU)
 LRNLayer("norm1", ["relu1"]; local_size=3, alpha=5e-5, beta=0.75, norm_region=WITHIN_CHANNEL)
 ConvLayer("conv2", ["norm1"]; kernel=(5,5), pad=(2,2), n_filter=32, weight_filler=filler(:gaussian; std=0.01))
 ActivationLayer("relu2", ["conv2"]; activation=ReLU)
 PoolLayer("pool2", ["relu2"]; kernel=(3,3), stride=(2,2))
 LRNLayer("norm2", ["pool2"]; local_size=3, alpha=5e-5, beta=0.75, norm_region=WITHIN_CHANNEL)
 ConvLayer("conv3", ["norm2"]; kernel=(5,5), pad=(2,2), n_filter=64, weight_filler=filler(:gaussian; std=0.01))
 ActivationLayer("relu3", ["conv3"]; activation=ReLU)
 PoolLayer("pool3", ["relu3"]; kernel=(3,3), stride=(2,2))
 LinearLayer("ip1", ["pool3"]; n_filter=10, weight_filler=filler(:gaussian; std=0.01))
 SoftmaxWithLoss("loss", ["ip1", "label"])
]

net = Net("CIFAR10", layers; log_level=3)

A version of AlexNet for Imagenet

layers = [
 MemoryLayer("data"; shape=(batchsize, 3, 227, 227)),
 MemoryLayer("label"; shape=(batchsize, 1)),
 ConvLayer("conv1", ["data"]; kernel=(11,11), stride=(4,4), n_filter=96),
 ActivationLayer("relu1", ["conv1"]; activation=ReLU),
 PoolLayer("pool1", ["relu1"]; kernel=(3,3), stride=(2,2)),
 LRNLayer("norm1", ["pool1"]; local_size=5, alpha=0.0001, beta=0.75),
 ConvLayer("conv2", ["norm1"]; kernel=(5,5), pad=(2,2), n_filter=256, group=2),
 ActivationLayer("relu2", ["conv2"]; activation=ReLU),
 PoolLayer("pool2", ["relu2"]; kernel=(3,3), stride=(2,2)),
 LRNLayer("norm2", ["pool2"]; local_size=5, alpha=0.0001, beta=0.75),
 ConvLayer("conv3", ["norm2"]; kernel=(3,3), pad=(1,1), n_filter=384),
 ActivationLayer("relu3", ["conv3"]; activation=ReLU),
 ConvLayer("conv4", ["relu3"]; kernel=(3,3), pad=(1,1), n_filter=384, group=2),
 ActivationLayer("relu4", ["conv4"]; activation=ReLU),
 ConvLayer("conv5", ["relu4"]; kernel=(3,3), pad=(1,1), n_filter=256, group=2),
 ActivationLayer("relu5", ["conv5"]; activation=ReLU),
 PoolLayer("pool5", ["relu5"]; kernel=(3,3), stride=(2,2)),
 LinearLayer("fc6", ["pool5"]; n_filter=4096),
 ActivationLayer("relu6", ["fc6"]; activation=ReLU),
 DropoutLayer("drop6", ["relu6"]; dropout_ratio=0.5),
 LinearLayer("fc7", ["drop6"]; n_filter=4096),
 ActivationLayer("relu7", ["fc7"]; activation=ReLU),
 DropoutLayer("drop7", ["relu7"]; dropout_ratio=0.5),
 LinearLayer("fc8", ["drop7"]; n_filter=1000),
 SoftmaxWithLoss("loss", ["fc8", "label"])
]

net = Net("CaffeNet", layers; log_level=3)

A recurrent network for character prediction

net = Net("CharRNN"; log_level=3)

function run_lstm(net, data; test=false, maxlen=100)
 reset(net)
 forward(net, DataLayer("lstm_seed", data=zeros(Float32,batchsize,dimension)))
 for i = 0:min(size(data, 2)-1, maxlen)
 prev_hidden = i == 0 ? "lstm_seed" : "lstm$(i-1)_hidden"
 prev_mem = i == 0 ? "lstm_seed" : "lstm$(i-1)_mem"
 word = i == 0 ? zeros(Float32, batchsize) : data[:,i]
 if test && i == 0
 word = fill(1.0f0 * '.', batchsize)
 end
 forward(net, DataLayer("word$i", data=word))
 forward(net, WordvecLayer("wordvec$i", ["word$i"];
 param_names=["wordvec_param"],
 dimension=dimension, vocab_size=vocab_size,
 weight_filler=filler(:uniform; min=-0.1, max=0.1)))
 forward(net, ConcatLayer("lstm_concat$i", [prev_hidden, "wordvec$i"]))
 forward(net, LstmLayer("lstm$i", ["lstm_concat$i", prev_mem], ["lstm$(i)_hidden", "lstm$(i)_mem"];
 param_names=["lstm_input_value", "lstm_input_gate", "lstm_forget_gate", "lstm_output_gate"],
 num_cells=dimension))
 forward(net, DropoutLayer("dropout$i", ["lstm$(i)_hidden"]; dropout_ratio=0.16))
 forward(net, LinearLayer("ip$i", ["dropout$i"];
 param_names=["softmax_ip_weights", "softmax_ip_bias"],
 n_filter=vocab_size,
 weight_filler=filler(:constant; value=0.0)))
 if test
 forward(net, Softmax("softmax$i", ["ip$i"]))
 softmax_choice(net.blobs.data["softmax$i"], sub(data, :,i+1))
 else
 forward(net, DataLayer("label$i", data=data[:,i+1]))
 forward(net, SoftmaxWithLoss("loss$i", ["ip$i", "label$i"]; ignore_label=vocab_size-1))
 end
 end
end

 © Copyright .
 Created using Sphinx 1.3.1.

api/README.html

 Navigation

 		
 index

 		Strada.jl latest documentation »

 Files in this directory are generated using the build.jl script. Make
all changes to the originating docstrings/files rather than these ones.

Documentation should only be built directly on the master branch.
Source links would otherwise become unavailable should a branch be
deleted from the origin. This means potential pull request authors
should not run the build script when filing a PR.

 © Copyright .
 Created using Sphinx 1.3.1.

api/layers.html

 Navigation

 		
 index

 		Strada.jl latest documentation »

ActivationLayer

Activation layers compute element-wise function, taking one bottom blob as input and producing one top blob of the same size. Parameters are

		activation (default Sigmoid): The nonlinear function applied. Can be ReLU, Sigmoid or TanH.

Both input and output are of shape n * c * h * w.

Strada/src/layers.jl:182

ConcatLayer

The Concat layer is a utility layer that concatenates its multiple input blobs to one single output blob. It takes one keyword parameter, axis. The input shape of the bottoms are n_i * c_i * h * w for i = 1, ..., K and the output shape is

		(n_1 + n_2 + ... + n_K) * c_1 * h * w if axis = 0 in which case all c_i should be the same and

		n_1 * (c_1 + c_2 + ... + c_K) * h * w if axis = 1 in which case all n_i should be the same.

Strada/src/layers.jl:284

ConvLayer

The Convolution layer convolves the input image with a set of learnable filters, each producing one feature map in the output image. keyword parameters are

		n_filter: The number of filters (required)

		kernel: A tuple specifying height and width of each filter (required)

		stride: A tuple which specifies the intervals at which to apply the filters to the input (horizontally and vertically)

		pad: A tuple which specifies the number of pixels to (implicitly) add to each side of the input

		group (default 1): If g > 1, we restrict the connectivity of each filter to a subset of the input. Specifically, the input and output channels are separated into g groups, and the ith output group channels will be only connected to the ith input group channels.

The input is of shape n * c_i * h_i * w_i and the output is of shape n * c_o * h_o * w_o, where h_o = (h_i + 2 * pad_h - kernel_h) / stride_h + 1 and w_o likewise.

Strada/src/layers.jl:96

DataLayer

The DataLayer makes it easy to propagate data through the network while doing computation. The data is being stored in Google Protocol Buffers and transferred to Caffe in this way. Its only keyword argument is data which is an array that will be presented to the next layer through the top blob. It is meant to be used only with ApolloNets.

Strada/src/layers.jl:351

DropoutLayer

The dropout layer is a regularizer that randomly sets input values to zero.

Strada/src/layers.jl:217

EuclideanLoss

The Euclidean loss layer computes the sum of squares of differences of its two inputs
Strada/src/layers.jl:332

LRNLayer

The local response normalization layer performs a kind of “lateral inhibition” by normalizing over local input regions. In ACROSS_CHANNELS mode, the local regions extend across nearby channels, but have no spatial extent (i.e., they have shape local_size x 1 x 1). In WITHIN_CHANNEL mode, the local regions extend spatially, but are in separate channels (i.e., they have shape 1 x local_size x local_size). Each input value is divided by (1+(α/n) sum_i x_i^2)β), where n is the size of each local region, and the sum is taken over the region centered at that value (zero padding is added where necessary). It accepts the following keyword arguments:

		local_size (default 3): Size of the region the normalization is computed over

		alpha (default 5e-5): Value of the parameter α

		beta (default 0.75): Value of the parameter β

		norm_region: Mode of the local contrast normalization. Can be ACROSS_CHANNELS or WITHIN_CHANNEL.

Strada/src/layers.jl:202

LinearLayer

The InnerProduct layer (also usually referred to as the fully connected layer) treats the input as a simple vector and produces an output in the form of a single vector (with the blob’s height and width set to 1). The keyword parameters are

		n_filter: The number of filters (required)

The input is of shape n * c_i * h_i * w_i and the output of shape n * c_o * 1 * 1.

Strada/src/layers.jl:125

LstmLayer

The LstmLayer is an LSTM unit. It takes two blobs as input, the current LSTM input and the previous memory cell content. It outputs the new hidden state and the updated memory cell.

Strada/src/layers.jl:240

LstmLayer

The LstmLayer is an LSTM unit. It takes two blobs as input, the current LSTM input and the previous memory cell content. It outputs the new hidden state and the updated memory cell.

Strada/src/layers.jl:240

MemoryLayer

The MemoryLayer presents data to Caffe through a pointer (it is implemented as a new Caffe Layer called PointerData), which can be set using set_data! method of CaffeNet. It is the preferred way to fill CaffeNet with data. As each MemoryLayer provides exactly one top blob, you will typically have multiple of these (in the supervised setting, one for labels and one for images for example). In set_data!, you can specify with an integer index which of the layers will be filled with the data provided.

Strada/src/layers.jl:339

PoolLayer

The PoolLayer partitions the input image into a set of non-overlapping rectangles and, for each such sub-region, outputs the maximum or average value. The keyword parameters are

		method (default MAX): The pooling method. Can be MAX, AVE or STOCHASTIC.

		pad (default 0): Specifies the number of pixels to (implicitly) add to each side of the input

		stride (default 1): Specifies the intervals at which to apply the filters to the input

The input is of shape n * c * h_i * w_i and the output of shape n * c * h_o * w_o where h_o and w_o are computed in the same way as for the convolution.

Strada/src/layers.jl:151

Softmax

Computes the softmax of the input. The parameter axis specifies which axis the softmax is computed over.

Strada/src/layers.jl:316

SoftmaxWithLoss

The softmax loss layer computes the multinomial logistic loss of the softmax of its inputs. It’s conceptually identical to a softmax layer followed by a multinomial logistic loss layer, but provides a more numerically stable gradient. Its parameters are

		ignore_label (default -1): Label does not contribute to the loss

This layer expects two bottom blobs, the actual data of size n * c * h * w and a label of size n * 1 * 1 * 1.

Strada/src/layers.jl:299

WordvecLayer

The WordvecLayer turns positive integers (indexes) between 0 and vocab_size - 1 into dense vectors of fixed size dimension. The input is of size n where n is the batchsize and the output is of size n * dimension.

Strada/src/layers.jl:256

 © Copyright .
 Created using Sphinx 1.3.1.

